New discovery could extend Moore's Law

2D-3D hybrid crystal that harnesses quantum physics could be answer

Researchers at McGill University in Montreal have discovered a new state of matter that they say could greatly extend Moore's Law.

Engineers at companies such as Intel and AMD have long been cramming more and more transistors — the building blocks of the processor -- onto a chip. Last year, for instance, Intel announced that each of its new Penryn chips hold 820 million transistors. The Penryn chip keeps alive the 40-year-old prediction by Gordon Moore that the number of transistors on a chip will double every two years.

Some observers have long predicted that leakage and energy consumption will be significant barriers to Moore's law at some point.

The McGill scientists, however, think they may have a way around those roadblocks.

The researchers say they've found a quasi-three-dimensional electron crystal that could enable them to harness quantum physics to make increasingly small computer chips. The crystal was discovered using a device cooled to a temperature that is 100 times colder than intergalactic space.

Dr Guillaume Gervais, director of McGill's Ultra-Low Temperature Condensed Matter Experiment Lab, says the material is not quite three-dimensional but is something in between two-dimension and three-dimensional.

"In a standard transistor, you have a gate, and the electron flow is controlled by it like a tap would control a gas flow," Gervais said in a statement. "You can understand the particles as independent units, which lets us treat them as ones and zeroes or on and off switches in digital computing. However, once you get down to the nano-scale, quantum forces kick in and the electrons may condense into a collective state and lose their individual nature. Then all sorts of bizarre phenomena pop up. In some cases, the electrons may even split. Concepts of 'on' and 'off' lose all meaning under these conditions."

Dan Olds, principal analyst with the Gabriel Consulting Group, says the McGill scientists are working on far-reaching science, and even if their theories prove true it would be quite some time before they could be used in the chip manufacturing process.

"There also isn't any evidence to say that this is the answer to continuing Moore's Law," says Olds. "It's a possible answer, it's a potential answer, but only after we understand how these new materials work, which we don't yet", he says.

"From a higher perspective, this is the kind of experimental activity that is taking place all over the world," he says.

"It's great, because we see these breakthroughs that others will build on. Many will fall by the wayside -- blind alleys that don't go anywhere interesting -- but a few will be found to be extremely useful over time. It's the law of the jungle in technology," Olds adds. "There are many experiments. Some are interesting but useless. A very few are interesting and very useful. It's too soon to tell which camp this one will fall into."

IBM, which is also working on shrinking transistors and extending Moore's Law, announced last February that it had hit a major milestone in nanotechnology, figuring out how to measure the amount of force needed to move an atom. Their new measurement capabilities could enable researchers to shrink the size of transistors used in computer chips.

Join the newsletter!

Or

Sign up to gain exclusive access to email subscriptions, event invitations, competitions, giveaways, and much more.

Membership is free, and your security and privacy remain protected. View our privacy policy before signing up.

Error: Please check your email address.

Tags Moore's LawchipsMcGill Universityhybrid crystal

Show Comments
[]