Researchers explore growing solar panels from bacteria

Bacteria can be used as a self-assembling biofilm

MIT engineers have succeeded in creating "biofilms," which combine bacterial cells with nonliving materials, such as gold nanoparticles, that can conduct electricity or emit light.

The hope is that biofilm, that slippery, slimy material made of bacteria that forms substances like dental plaque, may someday create functioning circuits that could be used to manufacture photovoltaic solar panels or act as "biosensors" that could sense toxins.

A depiction of the engineered bacteria that has incorporated gold nanoparticles and quantum dots -- the red and green balls (Source: Yan Liang).

The hybrid biofilms have the attributes of living cells, which reproduce and assemble into structure and react to their environment, and materials such as metal that can conduct electricity.

The research, lead by Timothy Lu, an assistant professor of electrical engineering and biological engineering, was published in the March 23 issue of the journal Nature Materials.

The researchers used E. coli bacteria for their initial experiments because the biofilms produced with it contain "curli fibers," protein chains that help material attach to surfaces. The curli fibers can be modified by adding peptides, which trap nonliving nanoparticles, such as gold or quantum dots, a semiconductor material the size of a nano particle that can be embedded into living cells. The result is a biofilm that reproduces and can conduct electricity.

"It's an interesting way of thinking about materials synthesis, which is very different from what people do now, which is usually a top-down approach," Lu said in MIT News.

Another advantage of using cells to construct circuitry is that they can communicate with other cells in the structure and reshape the composition of the biofilm based on the nonliving material involved.

"It's a really simple system but what happens over time is you get curli that's increasingly labeled by gold particles. It shows that indeed you can make cells that talk to each other and they can change the composition of the material over time," Lu told MIT News. "Ultimately, we hope to emulate how natural systems, like bone, form. No one tells bone what to do, but it generates a material in response to environmental signals."

This article, Researchers explore growing solar panels from bacteria, was originally published at Computerworld.com.

Lucas Mearian covers consumer data storage, consumerization of IT, mobile device management, renewable energy, telematics/car tech and entertainment tech for Computerworld. Follow Lucas on Twitter at @lucasmearian or subscribe to Lucas's RSS feed. His e-mail address is lmearian@computerworld.com.

See more by Lucas Mearian on Computerworld.com.

Read more about sustainable it in Computerworld's Sustainable IT Topic Center.

Join the newsletter!

Or

Sign up to gain exclusive access to email subscriptions, event invitations, competitions, giveaways, and much more.

Membership is free, and your security and privacy remain protected. View our privacy policy before signing up.

Error: Please check your email address.

Tags hardware systemssustainable ITEmerging Technologies

More about indeedMITTopic

Show Comments
[]